Integrales
La integración es un concepto fundamental del cálculo y del análisis matemático. Básicamente, unaintegral es una generalización de la suma de infinitos sumandos, infinitamente pequeños.
El cálculo integral, encuadrado en el cálculo infinitesimal, es una rama de las matemáticas en el proceso de integración o antiderivación, es muy común en la ingeniería y en la ciencia también; se utiliza principalmente para el cálculo de áreas y volúmenes de regiones y sólidos de revolución.
Fue usado por primera vez por científicos como Arquímedes, René Descartes, Isaac Newton, Gottfried Leibniz e Isaac Barrow. Los trabajos de este último y los aportes de Newton generaron el teorema fundamental del cálculo integral, que propone que la derivación y la integración son procesos inversos.
Teoría
Dada una función de una variable real
y un intervalo
de la recta real, la integral es igual alárea de la región del plano
limitada entre la gráfica de
, el eje
, y las líneas verticales
y
, donde son negativas las áreas por debajo del eje
.
La palabra "integral" también puede hacer referencia a la noción de primitiva: una función F, cuyaderivada es la función dada . En este caso se denomina integral indefinida, mientras que las integrales tratadas en este artículo son las integrales definidas. Algunos autores mantienen una distinción entre integrales primitivas e indefinidas.
Los principios de la integración fueron formulados por Newton y Leibniz a finales del siglo XVII. A través del teorema fundamental del cálculo, que desarrollaron los dos de forma independiente, la integración se conecta con la derivación, y la integral definida de una función se puede calcular fácilmente una vez se conoce una antiderivada. Las integrales y las derivadas pasaron a ser herramientas básicas del cálculo, con numerosas aplicaciones en ciencia e ingeniería.
Bernhard Riemann dio una definición rigurosa de la integral. Se basa en un límite que aproxima el área de una región curvilínea a base de partirla en pequeños trozos verticales. A comienzos del siglo XIX, empezaron a aparecer nociones más sofisticadas de la integral, donde se han generalizado los tipos de las funciones y los dominios sobre los cuales se hace la integración. La integral curvilínea se define para funciones vectoriales de una variable, y el intervalo de integración [a,b] se sustituye por el de la parametrización de la curva sobre la cual se esta integrando, la cual,conecta dos puntos del plano o del espacio. En una integral de superficie, la curva se sustituye por un trozo de una superficie en el espacio tridimensional.
Las integrales de las formas diferenciales desempeñan un papel fundamental en la geometría diferencial moderna. Estas generalizaciones de la integral surgieron primero a partir de las necesidades de la física, y tienen un papel importante en la formulación de muchas leyes físicas cómo, por ejemplo, las delelectromagnetismo. Los conceptos modernos de integración se basan en la teoría matemática abstracta conocida como integral de Lebesgue, que fue desarrollada por Henri Lebesgue.
Conceptos y aplicaciones
Las integrales aparecen en muchas situaciones prácticas. Considérese una piscina. Si es rectangular y de profundidad uniforme, entonces, a partir de su longitud, anchura y profundidad, se puede determinar fácilmente el volumen de agua que puede contener (para llenarla), el área de la superficie (para cubrirla), y la longitud de su borde (si se requiere saber su medida). Pero si es ovalada con un fondo redondeado, las cantidades anteriores no son sencillas de calcular. Una posibilidad es calcularlas mediante integrales.
Para el cálculo integral de áreas se sigue el siguiente razonamiento:
- Por ejemplo, consideremos la curva mostrada en la figura de arriba, gráfica de la función
, acotada entre
y
.
- La respuesta a la pregunta ¿Cuál es el área bajo la curva de función
, en el intervalo desde
hasta
? es: que el área coincidirá con la integral de
. La notación para esta integral será
.
Una primera aproximación,muy grosera por cierto, para obtener esta área, consiste en determinar el área del cuadrado unidad cuyo lado lo da la distancia desde x=0 hasta x=1 o también la longitud entrey=f(0)=0 y y=f(1)=1. Su área es exactamente 1x1 = 1. Tal como se puede inferir, el verdadero valor de la integral tendrá que ser más pequeño. Particionando la superficie en estudio, con trazos verticales, de tal manera que vamos obteniendo pequeños rectángulos, y reduciendo cada vez más el ancho de los rectángulos empleados para hacer la aproximación, se obtendrá un mejor resultado; por ejem. dividamos el intervalo en cinco partes, empleando los puntos 0, 1⁄5, 2⁄5,3⁄5,4⁄5 y, finalmente la abscisa 1. Se obtienen cinco rectángulitos cuyas alturas se determinan aplicando la función con las abscisas anteriormente descritas (del lado derecho de cada pedazo de la curva), así ,
,
… y así hasta
. Sumando las áreas de estos rectángulos, se obtiene una segunda aproximación de la integral que se está buscando,
Nótese que se está sumando una cantidad finita de valores de la función f, multiplicados por la diferencia entre dos puntos de aproximación sucesivos. Se puede ver fácilmente que las continuas aproximaciones continúan dando un valor más grande que el de la integral. Empleando más pasos se obtiene una aproximación más ajustada, pero no será nunca exacta. Si en vez de 5 subintervalos se toman doce y ahora tomamos las abscisas de la izquierda, tal como se muestra en el dibujo, se obtiene un estimado para el área, de 0,6203, que en este caso es de menor valor que el anteriormente determinado. La idea clave es la transición desde la suma de una cantidad finita de diferencias de puntos de aproximación multiplicados por los respectivos valores de la función, hasta usar pasos infinitamente finos, oinfinitesimales. La notación
concibe la integral como una suma ponderada (denotada por la "S" alargada), de los valores de la función multiplicados por pasos de anchura infinitesimal, los llamados diferenciales (indicados por dx).
Con respecto al cálculo real de integrales, el teorema fundamental del cálculo, debido a Newton y Leibniz, es el vínculo fundamental entre las operaciones de derivación e integración. Aplicándolo a la curva raíz cuadrada, se tiene que mirar la función relacionada y simplemente tomar
, donde
y
son las fronteras del intervalo [0,1]. (Éste es un ejemplo de una regla general, que dice que para f(x) = xq, con q ≠ −1, la función relacionada, la llamada primitiva es F(x) = (xq+1)/(q+1).) De modo que el valor exacto del área bajo la curva se calcula formalmente como
Como se puede ver, la segunda aproximación de 0,7 (con cinco rectangulitos), arrojó un valor superior al valor exacto; en cambio la aproximación con 12 rectangulitos de 0,6203 es una estimación muy por debajo del valor exacto (que es de 0,666...).
Históricamente, después de que los primeros esfuerzos de definir rigurosamente los infinitesimales no fructificasen, Riemann definió formalmente las integrales como el límite de sumas ponderadas, de forma que el dx sugiere el límite de una diferencia (la anchura del intervalo). La dependencia de la definición de Riemann de los intervalos y la continuidad motivó la aparición de nuevas definiciones, especialmente la integral de Lebesgue, que se basa en la habilidad de extender la idea de "medida" de maneras mucho más flexibles. Así, la notación
hace referencia a una suma ponderada de valores en que se divide la función, donde μ mide el peso que se tiene que asignar a cada valor. (Aquí A indica la región de integración.) La geometría diferencial, con su "cálculo de variedades", proporciona otra interpretación a esta notación familiar. Ahora f(x) y dx pasan a ser una forma diferencial, ω = f(x)dx, aparece un nuevo operador diferencial d, conocido como laderivada exterior, y el teorema fundamental pasa a ser el (más general) teorema de Stokes,
a partir del cual se deriva el teorema de Green, el teorema de la divergencia, y el teorema fundamental del cálculo.
Recientemente, los infinitesimales han reaparecido con rigor, a través de innovaciones modernas como elanálisis no estándar. Estos métodos no sólo reivindican la intuición de los pioneros, también llevan hacia las nuevas matemáticas, y hacen más intuitivo y comprensible el trabajo con cálculo infinitesimal.
A pesar de que hay diferencias entre todas estas concepciones de la integral, hay un solapamiento considerable. Así, el área de la piscina oval se puede hallar como una elipse geométrica, como una suma de infinitesimales, como una integral de Riemann, como una integral de Lebesgue, o como una variedad con una forma diferencial. El resultado obtenido con el cálculo será el mismo en todos los casos.
Definiciones formales
Hay muchas maneras de definir formalmente una integral, no todas equivalentes. Se establecen diferencias para poder abordar casos especiales que no pueden ser integrables con otras definiciones, pero también en ocasiones por razones pedagógicas. Las definiciones más utilizadas de la integral son las integrales de Riemann y las integrales de Lebesgue.
Integral de Riemann
La integral de Riemann se define en términos de sumas de Riemann de funciones respecto de particiones etiquetadas de un intervalo. Sea [a,b] un intervalo cerrado de la recta real; entonces una partición etiquetada de [a,b] es una secuencia finita
y denotamos la partición como
Esto divide al intervalo [a,b] en n subintervalos [xi−1, xi], cada uno de los cuales es "etiquetado" con un punto especificado ti de; [xi−1, xi]. Sea Δi = xi−xi−1 la anchura del subintervalo i; el paso de esta partición etiquetada es el ancho del subintervalo más grande obtenido por la partición, maxi=1…n Δi. Un sumatorio de Riemann de una función f respecto de esta partición etiquetada se define como
Así cada término del sumatorio es el área del rectángulo con altura igual al valor de la función en el punto especificado del subintervalo dado, y de la misma anchura que la anchura del subintervalo. La integral de Riemann de una función f sobre el intervalo [a,b] es igual a S si:
- Para todo ε > 0 existex δ > 0 tal que, para cualquier partición etiquetada [a,b] con paso más pequeño que δ, se tiene
, donde
Cuando las etiquetas escogidas dan el máximo (o mínimo) valor de cada intervalo, el sumatorio de Riemann pasa a ser un sumatorio de Darboux superior (o inferior), lo que sugiere la estrecha conexión que hay entre la integral de Riemann y la integral de Darboux.
Integral de Darboux
La Integral de Darboux se define en términos de sumas de los siguientes tipos:
Llamadas suma inferior y superior respectivamente, donde:
son las alturas de los rectángulos, y xi-xi-1 la longitud de la base de los rectángulos. La integral de Darboux está definida como el único número acotado entre las sumas inferior y superior, es decir,
La interpretación geométrica de la integral de Darboux sería el cálculo del área de la región en [a,b] por elMétodo exhaustivo. La integral de Darboux de una función f en [a,b] existe si y sólo si
Del Teorema de Caracterización que dice que si f es integrable en [a,b] entonces ∀ε>0 ∃ P partición de [a,b] : 0≤U(f,P)-L(f,P)≤ε, evidencia la equivalencia entre las definiciones de Integral de Riemman e Integral de Darboux pues se sigue que
.
Integral de Lebesgue
La integral de Riemann no está definida para un ancho abanico de funciones y situaciones de importancia práctica (y de interés teórico). Por ejemplo, la integral de Riemann puede integrar fácilmente la densidad para obtener la masa de una viga de acero, pero no se puede adaptar a una bola de acero que se apoya encima. Esto motiva la creación de otras definiciones, bajo las cuales se puede integrar un surtido más amplio de funciones. La integral de Lebesgue, en particular, logra una gran flexibilidad a base de centrar la atención en los pesos de la suma ponderada.
Así, la definición de la integral de Lebesgue empieza con una medida, μ. En el caso más sencillo, la medida de Lebesgue μ(A) de un intervalo A = [a, b] es su ancho, b − a, así la integral de Lebesgue coincide con la integral de Riemann cuando existen ambas. En casos más complicados, los conjuntos a medir pueden estar altamente fragmentados, sin continuidad y sin ningún parecido a intervalos.
Para explotar esta flexibilidad, la integral de Lebesgue invierte el enfoque de la suma ponderada. Como expresa Folland: "Para calcular la integral de Riemann de f, se particiona el dominio [a, b] en subintervalos", mientras que en la integral de Lebesgue, "de hecho lo que se está particionando es el recorrido de f".
Un enfoque habitual define primero la integral de la función característica de un conjunto medible A por:
.
Esto se extiende por linealidad a las funciones escalonadas simples, que sólo tienen un número finito n, de valores diferentes no negativos:
(donde la imagen de Ai al aplicarle la función escalonada s es el valor constante ai). Así, si E es un conjunto medible, se define
Entonces, para cualquier función medible no negativa f se define
Es decir, se establece que la integral de f es el supremo de todas las integrales de funciones escalonadas que son más pequeñas o iguales que f. Una función medible cualquiera f, se separa entre sus valores positivos y negativos a base de definir
Finalmente, f es Lebesgue integrable si
y entonces se define la integral por
Cuando el espacio métrico en el que están definidas las funciones es también un espacio topológicolocalmente compacto (como es el caso de los números reales R), las medidas compatibles con la topología en un sentido adecuado (medidas de Radon, de las cuales es un ejemplo la medida de Lebesgue) una integral respecto de ellas se puede definir de otra manera, se empieza a partir de las integrales de las funciones continuas con soporte compacto. De forma más precisa, las funciones compactamente soportadas forman un espacio vectorial que comporta una topología natural, y se puede definir una medida (Radon) como cualquier funcional lineal continuo de este espacio; entonces el valor de una medida en una función compactamente soportada, es también, por definición, la integral de la función. Entonces se continúa expandiendo la medida (la integral) a funciones más generales por continuidad, y se define la medida de un conjunto como la integral de su función característica. Este es el enfoque que toma Bourbaki y cierto número de otros autores. Para más detalles, véase medidas de Radon.
Otras integrales
A pesar de que las integrales de Riemann y Lebesgue son las definiciones más importantes de integral, hay unas cuántas más, por ejemplo:
- La integral de Riemann-Stieltjes, una extensión de la integral de Riemann.
- La integral de Lebesgue-Stieltjes, desarrollada por Johann Radon, que generaliza las integrales deRiemann-Stieltjes y de Lebesgue.
- La integral de Daniell, que incluye la integral de Lebesgue y la integral de Lebesgue-Stieltjes sin tener que depender de ninguna medida.
- La integral de Henstock-Kurzweil, definida de forma variada por Arnaud Denjoy, Oskar Perron, yJaroslav Kurzweil, y desarrollada por Ralph Henstock.
- La integral de Haar, que es la integral de Lebesgue con la medida de Haar.
- La integral de McShane.
- La integral de Bochner.
- La integral de Itō, integral que extiende a la integral de Riemann-Stieltjes, permite integrar respecto a procesos estocásticos que pueden no ser de variación acotada como el movimiento browniano.
Propiedades de la integración
Linealidad
- El conjunto de las funciones Riemann integrables en un intervalo cerrado [a, b] forman un espacio vectorial con las operaciones de suma (la función suma de otras dos es la función que a cada punto le hace corresponder la suma de las imágenes de este punto por cada una de las otras dos) y la multiplicación por un escalar. La operación integración
- es un funcional lineal de este espacio vectorial. Así, en primer lugar, el conjunto de funciones integrables es cerrado con la combinación lineal, y en segundo lugar, la integral de una combinación lineal es la combinación lineal de las integrales,
- De forma parecida, el conjunto de las funciones reales Lebesgue integrables en un espacio métrico Edado, con la medida μ es cerrado respecto de las combinaciones lineales y por lo tanto forman un espacio vectorial, y la integral de Lebesgue
- es un funcional lineal de este espacio vectorial, de forma que
- De forma más general, si se toma el espacio vectorial de todas las funciones medibles sobre un espacio métrico (E,μ), que toman valores en un espacio vectorial topológico completo localmente compacto V sobre un campo topológico localmente compacto K, f : E → V. Entonces se puede definir una aplicación integración abstracta que a cada función f le asigna un elemento de V o el símbolo ∞,
-
- que es compatible con las combinaciones lineales. En esta situación, la linealidad se sostiene para el subespacio de las funciones, cuya integral es un elemento de V (es decir, las integrales "finitas"). Los casos más importantes surgen cuando K es R, C, o una extensión finita del campo Qp de números p-ádicos, y V es un espacio vectorial de dimensión finita sobre K, y cuando K=C y V es un espacio de Hilbert complejo.
La linealidad, junto con algunas propiedad naturales de continuidad y la normalización para ciertas clases de funciones "simples", se pueden usar para dar una definición alternativa de integral. Este es el enfoque de Daniell para el caso de funciones reales en un conjunto X, generalizado por Bourbaki a funciones que toman valores en un espacio vectorial topológicamente compacto. Véase Hildebrandt (1953) para una caracterización axiomática de la integral.
Desigualdades con integrales
Se verifican varias desigualdades generales para funciones Riemann integrables definidas en un intervalocerrado y acotado [a, b] y se pueden generalizar a otras nociones de integral (Lebesgue y Daniell).
- Cotas superiores e inferiores. Una función f integrable en [a, b], es necesariamente acotada en el intervalo. Por lo tanto hay dos números reales m y M tales que m ≤ f (x) ≤ M para todo x de [a, b]. Dado que los sumatorios superior e inferior de f sobre [a, b] son también acotados para m(b − a) y M(b − a) respectivamente, de aquí resulta que
- Desigualdades entre funciones. Si f(x) ≤ g(x) para todo x de [a, b] entonces cada uno de los sumatorios superior e inferior de f son acotados inferior y superiormente por los sumatorios superior e inferior deg respectivamente. Así
-
- Esto es una generalización de las desigualdades anteriores, dado que M '(b − a) es la integral de la función constante con valor M en el intervalo [a, b].
- Subintervalos. Si [c, d] es un subintervalo de [a, b] y f(x) es no negativa para todo x, entonces
- Productos y valores absolutos de funciones. Si f y g son dos funciones, entonces podemos emplear su producto, potencias y valores absolutos:
-
- Si f es Riemann integrable en [a, b] entonces lo mismo se cumple para |f|, y
- Es más, si f y g son ambas Riemann integrables entonces f 2, g 2, y fg son también Riemann integrables, y
- Esta desigualdad se conoce como desigualdad de Cauchy-Schwarz, y desempeña un papel fundamental en la teoría de los espacios de Hilbert, donde el lado de la derecha se interpreta como elproducto escalar de dos funciones integrables f y g en el intervalo [a, b].
- Desigualdad de Hölder. Si p y q son dos números reales, 1 ≤ p, q ≤ ∞ con 1/p + 1/q = 1, y f y g son dos funciones Riemann integrables. Entonces las funciones |f|p y |g|q también son integrables y se cumple la desigualdad de Hölder:
- Para el caso de p = q = 2, la desigualdad de Hölder pasa a ser la desigualdad de Cauchy–Schwarz.
- Desigualdad de Minkowski. Si p ≥ 1 es un número real y f y g son funciones Riemann integrables. Entonces |f|p, |g|p y |f + g|p son también Riemann integrables y se cumple la desigualdad de Minkowski:
- Una desigualdad análoga a ésta para la integral de Lebesgue se usa en la construcción de los espacios Lp.
Convenciones
En esta sección f es una función real Riemann integrable. La integral
sobre un intervalo [a, b] está definida si a < b. Esto significa que los sumatorios superiores e inferiores de la función f se evalúan sobre una partición a = x0 ≤ x1 ≤ . . . ≤ xn = b cuyos valores xi son crecientes. Geométricamente significa que la integración tiene lugar "de izquierda a derecha", evaluando f dentro de intervalos [x i , x i +1] donde el intervalo con un índice más grande queda a la derecha del intervalo con un índice más pequeño. Los valores a y b, los puntos extremos del intervalo, se denominan límites de integración de f. Las integrales también se pueden definir si a > b:
- Inversión de los límites de integración. si a > b entonces se define
Ello, con a = b, implica:
- Integrales sobre intervalos de longitud cero. si a es un número real entonces
La primera convención es necesaria al calcular integrales sobre subintervalos de [a, b]; la segunda dice que una integral sobre un intervalo degenerado, o un punto, tiene que ser cero. Un motivo para la primera convención es que la integrabilidad de f sobre un intervalo [a, b] implica que f es integrable sobre cualquier subintervalo [c, d], pero en particular las integrales tienen la propiedad de que:
- Aditividad de la integración sobre intervalos. si c es cualquier elemento de [a, b], entonces
Con la primera convención la relación resultante
queda bien definida para cualquier permutación cíclica de a, b, y c.
En lugar de ver lo anterior como convenciones, también se puede adoptar el punto de vista de que la integración se hace sólo sobre variedades orientadas. Si M es una tal forma m-dimensional orientada, y M'es la misma forma con orientación opuesta y ω es una m-forma, entonces se tiene (véase más abajo la integración de formas diferenciales):
Teorema fundamental del cálculo
El teorema fundamental del cálculo es la afirmación de que la derivación y la integración son operaciones inversas: si una función continua primero se integra y luego se deriva, se recupera la función original. Una consecuencia importante, en ocasiones denominada el segundo teorema fundamental del cálculo, permite calcular integrales a base de emplear una primitiva de la función a integrar.
Enunciado de los teoremas
- Teorema fundamental del cálculo. Sea f una función real integrable definida en un intervalo cerrado[a, b]. Si se define F para cada x de [a, b] por
-
- entonces F es continua en [a, b]. Si f es continua en x de [a, b], entonces F es derivable en x, y F ′(x) = f(x).
- Segundo teorema fundamental del cálculo. Sea f una función real, integrable definida en un intervalo cerrado [a, b]. Si F es una función tal que F ′(x) = f(x) para todo x de [a, b] (es decir, F es una primitiva def), entonces
- Corolario. Si f es una función continua en [a, b], entonces f es integrable en [a, b], y F, definida por
-
- es una primitiva de f en [a, b]. Además,
Extensiones
Integrales impropias
Una integral de Riemann "propia" supone que el integrando está definido y es finito en un intervalo cerrado y acotado, cuyos extremos son los límites de integración. Una integral impropia aparece cuando una o más de estas condiciones no se satisface. En algunos casos, estas integrales se pueden definir tomando el límite de una sucesión de integrales de Riemann propias sobre intervalos sucesivamente más largos.
Si el intervalo no es acotado, por ejemplo en su extremo superior, entonces la integral impropia es el límite cuando el punto final tiende a infinito.
Si el integrando sólo está definido en un intervalo finito semiabierto, por ejemplo (a,b], entonces, otra vez el límite puede suministrar un resultado finito.
Esto es, la integral impropia es el límite de integrales propias cuando uno de los puntos extremos del intervalo de integración se aproxima, ya sea a un número real especificado, o ∞, o −∞. En casos más complicados, hacen falta límites en los dos puntos extremos o en puntos interiores.
Por ejemplo, la función integrada desde 0 a ∞ (imagen de la derecha). En el extremo inferior, a medida que x se acerca a 0 la función tiende a ∞, y el extremo superior es él mismo ∞, a pesar de que la función tiende a 0. Así, esta es una integral doblemente impropia. Integrada, por ejemplo, desde 1 hasta 3, con un sumatorio de Riemann es suficiente para obtener un resultado de
. Para integrar desde 1 hasta ∞, un sumatorio de Riemann no es posible. Ahora bien, cualquier límite superior finito, por ejemplo t (con t > 1), da un resultado bien definido,
. Este resultado tiene un límite finito cuando t tiende a infinito, que es
. De forma parecida, la integral desde 1⁄3 hasta a 1 admite también un sumatorio de Riemann, que por casualidad da de nuevo
. Sustituyendo 1⁄3 por un valor positivo arbitrario s (con s < 1) resulta igualmente un resultado definido y da
. Éste, también tiene un límite finito cuando s tiende a cero, que es
. Combinando los límites de los dos fragmentos, el resultado de esta integral impropia es
Este proceso no tiene el éxito garantizado; un límite puede no existir, o puede ser infinito. Por ejemplo, sobre el intervalo cerrado de 0 a 1 la integral de no converge; y sobre el intervalo abierto del 1 a ∞ la integral de
no converge.
También puede pasar que un integrando no esté acotado en un punto interior, en este caso la integral se ha de partir en este punto, y el límite de las integrales de los dos lados han de existir y han de ser acotados. Así
A la integral similar
no se le puede asignar un valor de esta forma, dado que las integrales por encima y por debajo de cero no convergen independientemente (en cambio, véase valor principal de Cauchy.)
Integración múltiple
Las integrales se pueden calcular sobre regiones diferentes de los intervalos. En general, una integral sobre un conjunto E de una función f se escribe:
Aquí x no hace falta que sea necesariamente un número real, sino que puede ser cualquier otra cantidad apropiada, por ejemplo, un vector de R3. El teorema de Fubini demuestra que estas integrales pueden reescribirse como una integral iterada. En otras palabras, la integral se puede calcular a base de integrar las coordenadas una por una.
De la misma manera que la integral definida de una función positiva representa el área de la región encerrada entre la gráfica de la función y el eje x, la integral doble de una función positiva de dos variables representa el volumen de la región comprendida entre la superficie definida por la función y el plano que contiene su dominio. (El mismo volumen puede obtenerse a través de una integral triple — la integral de la función de tres variables — de la función constante f(x, y, z) = 1 sobre la región mencionada antes entre la superficie y el plano, lo mismo se puede hacer con una integral doble para calcular una superficie.) Si el número de variables es mayor, entonces la integral representa un hipervolumen, el volumen de un sólido de más de tres dimensiones que no se puede representar gráficamente.
Por ejemplo, el volumen del paralelepípedo de caras 4 × 6 × 5 se puede obtener de dos maneras:
- Con la integral doble
-
- de la función f(x, y) = 5 calculada en la región D del plano xy que es la base del paralelepípedo.
- Con la integral triple
-
- de la función constante 1 calculada sobre el mismo paralelepípedo (a pesar de que este segundo método también se puede interpretar como el hipervolumen de un hiperparalelepípedo de cuatro dimensiones que tiene como base el paralelepípedo en cuestión y una altura constante de 1, como la altura es 1 el volumen coincide con el área de la base).
Puesto que es imposible calcular la antiderivada de una función de más de una variable, no existen las integrales múltiples indefinidas: tales integrales son todas definidas.
Integrales de línea
Integral de línea
El concepto de integral se puede extender a dominios de integración más generales, tales como las líneas curvas y las superficies. Estas integrales se conocen como integrales de línea e integrales de superficie respectivamente. Tienen importantes aplicaciones en la física cuando se trata con campos vectoriales.
Una integral de línea es una integral donde la función a integrar es evaluada a lo largo de una curva. Se utilizan varias integrales curvilíneas diferentes. En el caso de una curva cerrada también se la denominaintegral de contorno.
La función a integrar puede ser un campo escalar o un campo vectorial. El valor de la integral curvilínea es la suma de los valores del campo en los puntos de la línea, ponderados por alguna función escalar de la curva (habitualmente la longitud del arco o, en el caso de un campo vectorial, el producto escalar del campo vectorial por un vector diferencial de la curva). Esta ponderación distingue las integrales curvilíneas de las integrales más sencillas definidas sobre intervalos.
Muchas fórmulas sencillas de la física tienen de forma natural análogas continuas en términos de integrales de línea; por ejemplo, el hecho de que el trabajo sea igual a la fuerza multiplicada por la distancia se puede expresar (en términos de cantidades vectoriales) como:
que tiene su paralelismo en la integral de línea
que acumula los componentes vectoriales a lo largo de un camino continuo, y así calcula el trabajo realizado por un objeto al moverse a través de un campo, como por ejemplo un campo eléctrico o un campo gravitatorio.
Integrales de superficie
Una integral de superficie es una integral definida calculada sobre una superficie (que puede ser unconjunto curvado en el espacio; se puede entender como la integral doble análoga a la integral de línea. La función a integrar puede ser un campo escalar o un campo vectorial. El valor de la integral de superficie es la suma ponderada de los valores del campo en todos los puntos de la superficie. Esto se puede conseguir a base de dividir la superficie en elementos de superficie, los cuales proporcionan la partición para los sumatorios de Riemann.
Como ejemplo de las aplicaciones de las integrales de superficie, se puede considerar un campo vectorialv sobre una superficie S; es decir, para cada punto x de S, v(x) es un vector. Imagínese que se tiene un fluido fluyendo a través de S, de forma que v(x) determina la velocidad del fluido en el punto x. El caudal se define como la cantidad de fluido que fluye a través de S en la unidad de tiempo. Para hallar el caudal, hay que calcular el producto escalar de v por el vector unitario normal a la superficie S en cada punto, lo que nos dará un campo escalar, que integramos sobre la superficie:
.
El caudal de fluido de este ejemplo puede ser de un fluido físico como el agua o el aire, o de un flujo eléctrico o magnético. Así, las integrales de superficie tienen aplicaciones en la física, en particular en lateoría clásica del electromagnetismo.